AI Inference Engine
Base URL: https://api.radiance.cloud
The Radiance AI API is a decentralized batch inference engine that processes AI workloads across distributed compute nodes. The API consists of two main interfaces:
# 1. List available models
curl https://api.radiance.cloud/airunner/models
# 2. Submit a job
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=image-classification" \\
-F "file=@image.jpg" \\
-F 'payload={"top_k": 5}'
# Response: {"success": true, "result": {"id": "abc123...", "status": "queued"}}
# 3. Check status
curl https://api.radiance.cloud/airunner/status/abc123...
# 4. Get result when completed
curl https://api.radiance.cloud/airunner/result/json/abc123...
# Agent authentication required via Bearer token
export AGENT_TOKEN="your-agent-bearer-token"
# 1. Claim a job
curl -X POST https://api.radiance.cloud/airunner/agent/claim \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-agent-id: my-compute-node-01"
# 2. Download input file (if job has one)
curl https://api.radiance.cloud/airunner/agent/get/abc123 \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789..." \\
-o input.jpg
# 3. Submit result
curl -X POST https://api.radiance.cloud/airunner/agent/return/abc123 \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789..." \\
-F 'data={"predictions": [{"label": "cat", "confidence": 0.95}]}' \\
-F "file=@result.json"
The Client API is publicly accessible and requires no authentication. Use it to submit inference jobs, check their status, and retrieve results.
Description: List all available AI models with their configurations
No parameters required.
{
"success": true,
"result": {
"models": [
{
"id": "image-classification",
"name": "Image Classification",
"description": "Classify images into predefined categories",
"requiresFile": true,
"allowedFileTypes": ["image/jpeg", "image/png", "image/webp", "image/gif"],
"payloadSchema": {
"top_k": {
"type": "number",
"required": false,
"description": "Return top K predictions (default: 5)"
},
"threshold": {
"type": "number",
"required": false,
"description": "Confidence threshold (0-1)"
}
}
},
{
"id": "text-generation",
"name": "Text Generation",
"description": "Generate text from prompt",
"requiresFile": false,
"payloadSchema": {
"prompt": {
"type": "string",
"required": true,
"description": "Input prompt"
},
"max_tokens": {
"type": "number",
"required": false,
"description": "Maximum tokens to generate"
}
}
}
]
}
}
curl https://api.radiance.cloud/airunner/models
Description: Submit a single inference job
| Header | Value | Required |
|---|---|---|
Content-Type |
multipart/form-data |
Required |
| Field |
|---|
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "queued",
"created_at": "2025-10-27T10:15:30.123Z",
"upload_key": "uploads/550e8400.../image.jpg",
"upload_mime": "image/jpeg",
"webhook_url": "https://myapp.com/webhook"
}
}
{
"success": false,
"error": {
"code": "MISSING_MODEL",
"message": "Model ID is required"
}
}
{
"success": false,
"error": {
"code": "INVALID_MODEL",
"message": "Unknown model: wrong-model-id. Use /airunner/models to see available models"
}
}
{
"success": false,
"error": {
"code": "FILE_REQUIRED",
"message": "Model 'image-classification' requires a file"
}
}
{
"success": false,
"error": {
"code": "INVALID_PAYLOAD",
"message": "Payload validation failed",
"details": [
"Missing required field: prompt",
"Field 'temperature' must be a number"
]
}
}
{
"success": false,
"error": {
"code": "FILE_TOO_LARGE",
"message": "Max 52428800 bytes"
}
}
{
"success": false,
"error": {
"code": "UNSUPPORTED_MEDIA_TYPE",
"message": "Model 'image-classification' does not support type: application/pdf",
"allowedTypes": ["image/jpeg", "image/png", "image/webp", "image/gif"]
}
}
# Image classification with file
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=image-classification" \\
-F "file=@cat.jpg" \\
-F 'payload={"top_k": 3, "threshold": 0.5}'
# Text generation without file
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=text-generation" \\
-F 'payload={"prompt": "Once upon a time", "max_tokens": 100}'
# High priority job with webhook
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=speech-to-text" \\
-F "file=@audio.mp3" \\
-F "priority=high" \\
-F "webhook_url=https://myapp.com/webhook"
Description: Submit multiple jobs in a single request (up to 100 jobs)
| Header | Value | Required |
|---|---|---|
Content-Type |
application/json |
Required |
{
"jobs": [
{
"model": "image-classification",
"file_base64": "...",
"filename": "image1.jpg",
"payload": {"top_k": 5},
"priority": "normal",
"webhook_url": "https://myapp.com/webhook"
},
{
"model": "text-generation",
"payload": {"prompt": "Hello world", "max_tokens": 50},
"priority": "high"
}
]
}
{
"success": true,
"result": {
"submitted": 2,
"failed": 0,
"jobs": [
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "queued",
"created_at": "2025-10-27T10:15:30.123Z",
"upload_key": "uploads/550e8400.../image1.jpg",
"upload_mime": "image/jpeg"
},
{
"id": "660f9511-f30c-52e5-b827-557766551111",
"model": "text-generation",
"priority": 2,
"status": "queued",
"created_at": "2025-10-27T10:15:30.456Z",
"upload_key": null,
"upload_mime": null
}
]
}
}
{
"success": true,
"result": {
"submitted": 1,
"failed": 1,
"jobs": [
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "queued",
"created_at": "2025-10-27T10:15:30.123Z"
}
],
"errors": [
{
"index": 1,
"error": "Model 'invalid-model' is invalid"
}
]
}
}
data:<mime-type>;base64,<base64-data>
curl -X POST https://api.radiance.cloud/airunner/submit/batch \\
-H "Content-Type: application/json" \\
-d '{
"jobs": [
{
"model": "image-classification",
"file_base64": "...",
"filename": "cat.jpg",
"payload": {"top_k": 3}
},
{
"model": "image-classification",
"file_base64": "...",
"filename": "dog.png",
"payload": {"top_k": 3}
}
]
}'
Description: Check the status and timing metrics of a job
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID returned from submit |
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "completed",
"created_at": "2025-10-27T10:15:30.123Z",
"started_at": "2025-10-27T10:15:45.678Z",
"completed_at": "2025-10-27T10:16:12.345Z",
"timing": {
"queue_time_ms": 15555,
"running_time_ms": 26667,
"complete_time_ms": 42222,
"latency_ms": 0
},
"failure_reason": null,
"result_key": "results/550e8400.../result.json",
"result_file_key": "results/550e8400.../output.jpg",
"webhook_url": "https://myapp.com/webhook"
}
}
| Status | Description |
|---|---|
queued |
Job is waiting to be claimed by an agent |
running |
Job is currently being processed by an agent |
completed |
Job finished successfully, results available |
failed |
Job failed during processing (see failure_reason) |
cancelled |
Job was cancelled by the client |
{
"success": false,
"error": {
"code": "NOT_FOUND",
"message": "Job not found (yet)"
}
}
curl https://api.radiance.cloud/airunner/status/550e8400-e29b-41d4-a716-446655440000
Description: Cancel a queued or running job
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID to cancel |
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"status": "cancelled",
"cancelled_at": "2025-10-27T10:16:30.123Z"
}
}
{
"success": false,
"error": {
"code": "NOT_FOUND",
"message": "Job not found"
}
}
{
"success": false,
"error": {
"code": "ALREADY_FINISHED",
"message": "Cannot cancel completed or failed job"
}
}
curl -X DELETE https://api.radiance.cloud/airunner/cancel/550e8400-e29b-41d4-a716-446655440000
Description: Get the result metadata and data as JSON
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID |
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"finished_at": "2025-10-27T10:16:12.345Z",
"agent": "compute-node-01",
"model": "image-classification",
"payload": {
"top_k": 5,
"threshold": 0.5
},
"upload_key": "uploads/550e8400.../cat.jpg",
"result": {
"predictions": [
{"label": "cat", "confidence": 0.95},
{"label": "kitten", "confidence": 0.87},
{"label": "tabby", "confidence": 0.76}
]
},
"output": {
"type": "file",
"file_key": "results/550e8400.../output.jpg",
"filename": "output.jpg",
"content_type": "image/jpeg"
},
"meta": {
"processing_time_ms": 2450,
"model_version": "v2.1"
}
}
{
"success": false,
"error": {
"code": "NOT_FOUND",
"message": "Job not found"
}
}
{
"success": false,
"error": {
"code": "NOT_READY",
"message": "Result not available yet"
}
}
curl https://api.radiance.cloud/airunner/result/json/550e8400-e29b-41d4-a716-446655440000
Description: Download the result file (if the job produced one)
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID |
Returns the file with appropriate Content-Type and Content-Disposition headers.
{
"success": false,
"error": {
"code": "NO_FILE",
"message": "This result has no file"
}
}
# Download result file
curl https://api.radiance.cloud/airunner/result/file/550e8400-e29b-41d4-a716-446655440000 \\
-o result.jpg
Description: List recent jobs with timing information (last 100 jobs)
{
"success": true,
"result": {
"jobs": [
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 2,
"status": "completed",
"created_at": "2025-10-27T10:15:30.123Z",
"started_at": "2025-10-27T10:15:45.678Z",
"completed_at": "2025-10-27T10:16:12.345Z",
"timing": {
"queue_time_ms": 15555,
"running_time_ms": 26667,
"complete_time_ms": 42222,
"latency_ms": 0
}
}
]
}
}
curl https://api.radiance.cloud/airunner/jobs/debug
The Agent API is used by compute nodes to claim jobs, download input files, and submit results. All Agent API endpoints require authentication.
# Set your agent token
export AGENT_TOKEN="your-secret-agent-token"
# All agent requests must include:
Authorization: Bearer $AGENT_TOKEN
Description: Claim the next available job from the queue. Jobs are claimed based on priority (urgent > high > normal > low) and then by creation time (oldest first).
| Header | Value | Required |
|---|---|---|
Authorization |
Bearer <token> |
Required |
x-agent-id |
Agent identifier | Optional |
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"payload": {
"top_k": 5,
"threshold": 0.5
},
"priority": 1,
"upload_key": "uploads/550e8400.../cat.jpg",
"upload_mime": "image/jpeg",
"claim_token": "xyz789-claim-token-abc123"
}
}
When there are no jobs in the queue, the endpoint returns 204 No Content with an empty body.
{
"success": false,
"error": {
"code": "UNAUTHORIZED",
"message": "Agent auth required"
}
}
claim_token in the response is required for all subsequent operations on this job. Store it securely and include it in the x-claim-token header for get, return, and failed endpoints.
curl -X POST https://api.radiance.cloud/airunner/agent/claim \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-agent-id: my-compute-node-01"
Description: Download the input file for a claimed job
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID |
| Header | Value | Required |
|---|---|---|
Authorization |
Bearer <token> |
Required |
x-claim-token |
Token from claim response | Required |
Returns the file with appropriate Content-Type and Content-Disposition headers.
{
"success": false,
"error": {
"code": "UNAUTHORIZED",
"message": "Agent auth required"
}
}
{
"success": false,
"error": {
"code": "FORBIDDEN",
"message": "Invalid claim token"
}
}
{
"success": false,
"error": {
"code": "NO_UPLOAD",
"message": "Job has no uploaded file"
}
}
{
"success": false,
"error": {
"code": "INVALID_STATE",
"message": "Job not running"
}
}
curl https://api.radiance.cloud/airunner/agent/get/550e8400-e29b-41d4-a716-446655440000 \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789-claim-token-abc123" \\
-o input.jpg
Description: Submit the result for a completed job. Supports both JSON data and file uploads.
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID |
| Header | Value | Required |
|---|---|---|
Authorization |
Bearer <token> |
Required |
x-claim-token |
Token from claim response | Required |
Content-Type |
multipart/form-data or application/json |
Required |
| Field | Type | Required | Description |
|---|---|---|---|
data |
string (JSON) | Optional | Result data as JSON string |
file |
file | Optional | Result file (image, audio, etc.) |
meta |
string (JSON) | Optional | Additional metadata (processing time, model version, etc.) |
{
"data": {
"predictions": [
{"label": "cat", "confidence": 0.95}
]
},
"meta": {
"processing_time_ms": 2450,
"model_version": "v2.1"
}
}
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"status": "completed",
"result_key": "results/550e8400.../result.json",
"result_file_key": "results/550e8400.../output.jpg"
}
}
result_key. This file includes the job ID, timestamp, agent ID, model, payload, your data, optional file reference, and optional metadata.
{
"success": false,
"error": {
"code": "UNAUTHORIZED",
"message": "Agent auth required"
}
}
{
"success": false,
"error": {
"code": "FORBIDDEN",
"message": "Invalid claim token"
}
}
{
"success": false,
"error": {
"code": "INVALID_STATE",
"message": "Job not running"
}
}
{
"success": false,
"error": {
"code": "UNSUPPORTED_MEDIA_TYPE",
"message": "Use JSON or multipart"
}
}
# Return JSON result only
curl -X POST https://api.radiance.cloud/airunner/agent/return/550e8400-... \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789..." \\
-H "Content-Type: application/json" \\
-d '{
"data": {
"predictions": [
{"label": "cat", "confidence": 0.95},
{"label": "kitten", "confidence": 0.87}
]
},
"meta": {
"processing_time_ms": 2450
}
}'
# Return with file and data
curl -X POST https://api.radiance.cloud/airunner/agent/return/550e8400-... \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789..." \\
-F 'data={"transcription": "Hello world"}' \\
-F "file=@output.txt" \\
-F 'meta={"model_version": "whisper-v3"}'
Description: Report that a job has failed during processing
| Parameter | Type | Description |
|---|---|---|
id |
string (UUID) | Job ID |
| Header | Value | Required |
|---|---|---|
Authorization |
Bearer <token> |
Required |
x-claim-token |
Token from claim response | Required |
Content-Type |
application/json |
Required |
{
"reason": "Model inference failed: CUDA out of memory"
}
{
"success": true,
"result": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"status": "failed",
"reason": "Model inference failed: CUDA out of memory"
}
}
{
"success": false,
"error": {
"code": "UNAUTHORIZED",
"message": "Agent auth required"
}
}
{
"success": false,
"error": {
"code": "FORBIDDEN",
"message": "Invalid claim token"
}
}
curl -X POST https://api.radiance.cloud/airunner/agent/failed/550e8400-... \\
-H "Authorization: Bearer $AGENT_TOKEN" \\
-H "x-claim-token: xyz789..." \\
-H "Content-Type: application/json" \\
-d '{"reason": "Invalid input file format"}'
The following AI models are currently available in the system:
| Property | Value |
|---|---|
| Model ID | image-classification |
| Requires File | ✅ Yes |
| File Types | image/jpeg, image/png, image/webp, image/gif |
Payload Parameters:
top_k (number, optional): Return top K predictions (default: 5)threshold (number, optional): Confidence threshold (0-1)| Property | Value |
|---|---|
| Model ID | object-detection |
| Requires File | ✅ Yes |
| File Types | image/jpeg, image/png, image/webp |
Payload Parameters:
confidence (number, optional): Detection confidence thresholdiou_threshold (number, optional): IoU threshold for NMSmax_objects (number, optional): Maximum objects to detect| Property | Value |
|---|---|
| Model ID | speech-to-text |
| Requires File | ✅ Yes |
| File Types | audio/mpeg, audio/wav, audio/ogg, audio/flac, audio/aac, audio/m4a |
Payload Parameters:
language (string, optional): Language code (e.g., 'en', 'es')timestamps (boolean, optional): Include word-level timestamps| Property | Value |
|---|---|
| Model ID | text-to-speech |
| Requires File | ❌ No |
Payload Parameters:
text (string, required): Text to synthesizevoice (string, optional): Voice IDspeed (number, optional): Speech speed multiplier| Property | Value |
|---|---|
| Model ID | text-generation |
| Requires File | ❌ No |
Payload Parameters:
prompt (string, required): Input promptmax_tokens (number, optional): Maximum tokens to generatetemperature (number, optional): Sampling temperature (0-2)top_p (number, optional): Nucleus sampling parameter| Property | Value |
|---|---|
| Model ID | image-generation |
| Requires File | ❌ No |
Payload Parameters:
prompt (string, required): Image description promptnegative_prompt (string, optional): What to avoidwidth (number, optional): Image width in pixelsheight (number, optional): Image height in pixelssteps (number, optional): Number of inference steps| Property | Value |
|---|---|
| Model ID | video-analysis |
| Requires File | ✅ Yes |
| File Types | video/mp4, video/avi, video/mov, video/webm, video/mkv |
Payload Parameters:
extract_frames (boolean, optional): Extract key framesdetect_scenes (boolean, optional): Detect scene changes| Property | Value |
|---|---|
| Model ID | document-analysis |
| Requires File | ✅ Yes |
| File Types | application/pdf, application/msword, .docx, .xlsx, text/plain, text/csv |
Payload Parameters:
extract_tables (boolean, optional): Extract tablesocr (boolean, optional): Perform OCR on images| Property | Value |
|---|---|
| Model ID | data-processing |
| Requires File | ✅ Yes |
| File Types | text/csv, application/json, application/xml, application/x-parquet |
Payload Parameters:
operation (string, required): Operation type: transform, aggregate, analyzecolumns (array, optional): Columns to process| Property | Value |
|---|---|
| Model ID | 3d-model-analysis |
| Requires File | ✅ Yes |
| File Types | model/obj, model/stl, model/gltf+json, model/gltf-binary |
Payload Parameters:
extract_mesh_info (boolean, optional): Extract mesh statisticsvalidate (boolean, optional): Validate model integrity{
"success": true,
"result": {
// Endpoint-specific data
}
}
{
"success": false,
"error": {
"code": "ERROR_CODE",
"message": "Human-readable error description",
"details": [] // Optional additional information
}
}
| Code | HTTP Status | Description |
|---|---|---|
BAD_REQUEST |
400 | Malformed request or wrong content type |
UNAUTHORIZED |
401 | Missing or invalid authentication (Agent API only) |
FORBIDDEN |
403 | Invalid claim token |
NOT_FOUND |
404 | Job or resource not found |
CONFLICT |
409 | Invalid state transition (e.g., cancelling completed job) |
FILE_TOO_LARGE |
413 | File exceeds 50MB limit |
UNSUPPORTED_MEDIA_TYPE |
415 | File type not allowed for this model |
MISSING_MODEL |
400 | Model ID not provided |
INVALID_MODEL |
400 | Unknown model ID |
FILE_REQUIRED |
400 | Model requires a file but none provided |
INVALID_PAYLOAD |
400 | Payload validation failed |
INVALID_STATE |
409 | Job not in correct state for operation |
NOT_READY |
409 | Result not yet available |
#!/bin/bash
# Complete workflow: Submit → Poll → Get Result
# Step 1: Submit job
RESPONSE=$(curl -s -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=image-classification" \\
-F "file=@my_image.jpg" \\
-F 'payload={"top_k": 5, "threshold": 0.3}' \\
-F "priority=high" \\
-F "webhook_url=https://myapp.com/webhook")
echo "Submit Response: $RESPONSE"
# Extract job ID
JOB_ID=$(echo $RESPONSE | jq -r '.result.id')
echo "Job ID: $JOB_ID"
# Step 2: Poll until completed
while true; do
STATUS=$(curl -s https://api.radiance.cloud/airunner/status/$JOB_ID)
STATE=$(echo $STATUS | jq -r '.result.status')
echo "Current status: $STATE"
if [ "$STATE" = "completed" ]; then
echo "Job completed!"
break
elif [ "$STATE" = "failed" ]; then
REASON=$(echo $STATUS | jq -r '.result.failure_reason')
echo "Job failed: $REASON"
exit 1
fi
sleep 2
done
# Step 3: Get result JSON
curl -s https://api.radiance.cloud/airunner/result/json/$JOB_ID | jq '.'
# Step 4: Download result file (if exists)
curl -s https://api.radiance.cloud/airunner/result/file/$JOB_ID -o result.jpg
#!/bin/bash
# Process multiple images in one batch request
# Convert images to base64
IMAGE1_B64=$(base64 -w 0 cat1.jpg)
IMAGE2_B64=$(base64 -w 0 cat2.jpg)
IMAGE3_B64=$(base64 -w 0 dog1.jpg)
# Submit batch
curl -X POST https://api.radiance.cloud/airunner/submit/batch \\
-H "Content-Type: application/json" \\
-d "{
\\"jobs\\": [
{
\\"model\\": \\"image-classification\\",
\\"file_base64\\": \\"data:image/jpeg;base64,$IMAGE1_B64\\",
\\"filename\\": \\"cat1.jpg\\",
\\"payload\\": {\\"top_k\\": 3},
\\"priority\\": \\"normal\\"
},
{
\\"model\\": \\"image-classification\\",
\\"file_base64\\": \\"data:image/jpeg;base64,$IMAGE2_B64\\",
\\"filename\\": \\"cat2.jpg\\",
\\"payload\\": {\\"top_k\\": 3}
},
{
\\"model\\": \\"image-classification\\",
\\"file_base64\\": \\"data:image/jpeg;base64,$IMAGE3_B64\\",
\\"filename\\": \\"dog1.jpg\\",
\\"payload\\": {\\"top_k\\": 3}
}
]
}" | jq '.'
import requests
import time
import json
BASE_URL = "https://api.radiance.cloud"
def submit_job(model, file_path=None, payload=None, priority="normal", webhook_url=None):
"""Submit a job to the API"""
url = f"{BASE_URL}/airunner/submit"
files = {}
data = {"model": model}
if file_path:
files["file"] = open(file_path, "rb")
if payload:
data["payload"] = json.dumps(payload)
data["priority"] = priority
if webhook_url:
data["webhook_url"] = webhook_url
response = requests.post(url, files=files, data=data)
if files:
files["file"].close()
return response.json()
def get_status(job_id):
"""Get job status"""
url = f"{BASE_URL}/airunner/status/{job_id}"
response = requests.get(url)
return response.json()
def get_result(job_id):
"""Get result JSON"""
url = f"{BASE_URL}/airunner/result/json/{job_id}"
response = requests.get(url)
return response.json()
def download_result_file(job_id, output_path):
"""Download result file"""
url = f"{BASE_URL}/airunner/result/file/{job_id}"
response = requests.get(url)
with open(output_path, "wb") as f:
f.write(response.content)
# Example: Image classification
result = submit_job(
model="image-classification",
file_path="my_image.jpg",
payload={"top_k": 5, "threshold": 0.3},
priority="high"
)
job_id = result["result"]["id"]
print(f"Job submitted: {job_id}")
# Poll until completed
while True:
status = get_status(job_id)
state = status["result"]["status"]
print(f"Status: {state}")
if state == "completed":
# Get result
result_data = get_result(job_id)
print("Result:", json.dumps(result_data, indent=2))
# Download file if exists
if result_data.get("output"):
download_result_file(job_id, "result.jpg")
print("Result file downloaded")
break
elif state == "failed":
print(f"Job failed: {status['result']['failure_reason']}")
break
time.sleep(2)
import requests
import time
import json
import os
BASE_URL = "https://api.radiance.cloud"
AGENT_TOKEN = os.environ.get("AGENT_TOKEN")
AGENT_ID = "compute-node-01"
headers = {
"Authorization": f"Bearer {AGENT_TOKEN}"
}
def claim_job():
"""Claim next available job"""
url = f"{BASE_URL}/airunner/agent/claim"
headers_with_agent = headers.copy()
headers_with_agent["x-agent-id"] = AGENT_ID
response = requests.post(url, headers=headers_with_agent)
if response.status_code == 204:
return None # No jobs available
return response.json()
def download_input(job_id, claim_token, output_path):
"""Download input file"""
url = f"{BASE_URL}/airunner/agent/get/{job_id}"
headers_with_token = headers.copy()
headers_with_token["x-claim-token"] = claim_token
response = requests.get(url, headers=headers_with_token)
if response.status_code == 404:
return False # No file
with open(output_path, "wb") as f:
f.write(response.content)
return True
def submit_result(job_id, claim_token, data=None, file_path=None, meta=None):
"""Submit result"""
url = f"{BASE_URL}/airunner/agent/return/{job_id}"
headers_with_token = headers.copy()
headers_with_token["x-claim-token"] = claim_token
files = {}
form_data = {}
if data:
form_data["data"] = json.dumps(data)
if file_path:
files["file"] = open(file_path, "rb")
if meta:
form_data["meta"] = json.dumps(meta)
response = requests.post(url, headers=headers_with_token, files=files, data=form_data)
if files:
files["file"].close()
return response.json()
def report_failure(job_id, claim_token, reason):
"""Report job failure"""
url = f"{BASE_URL}/airunner/agent/failed/{job_id}"
headers_with_token = headers.copy()
headers_with_token["x-claim-token"] = claim_token
headers_with_token["Content-Type"] = "application/json"
response = requests.post(
url,
headers=headers_with_token,
json={"reason": reason}
)
return response.json()
def process_image_classification(input_path, payload):
"""Simulate image classification processing"""
# Your actual model inference code here
# This is a placeholder
time.sleep(2) # Simulate processing
return {
"predictions": [
{"label": "cat", "confidence": 0.95},
{"label": "kitten", "confidence": 0.87},
{"label": "tabby", "confidence": 0.76}
]
}
# Main worker loop
print(f"Agent {AGENT_ID} starting...")
while True:
try:
# Claim a job
job_response = claim_job()
if not job_response:
print("No jobs available, waiting...")
time.sleep(5)
continue
job = job_response["result"]
job_id = job["id"]
claim_token = job["claim_token"]
model = job["model"]
payload = job["payload"]
print(f"Claimed job {job_id} (model: {model})")
# Download input file if exists
input_file = None
if job.get("upload_key"):
input_file = f"input_{job_id}"
has_file = download_input(job_id, claim_token, input_file)
if has_file:
print(f"Downloaded input file: {input_file}")
# Process based on model
try:
if model == "image-classification":
result_data = process_image_classification(input_file, payload)
# Add more model handlers here
else:
raise Exception(f"Unsupported model: {model}")
# Submit result
submit_result(
job_id,
claim_token,
data=result_data,
meta={"agent": AGENT_ID, "processing_time_ms": 2000}
)
print(f"Completed job {job_id}")
except Exception as e:
# Report failure
report_failure(job_id, claim_token, str(e))
print(f"Failed job {job_id}: {e}")
finally:
# Cleanup
if input_file and os.path.exists(input_file):
os.remove(input_file)
except Exception as e:
print(f"Worker error: {e}")
time.sleep(10) # Wait before retrying
#!/bin/bash
# Submit text generation job (no file required)
RESPONSE=$(curl -s -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=text-generation" \\
-F 'payload={
"prompt": "Write a short story about a robot learning to paint",
"max_tokens": 500,
"temperature": 0.7
}')
JOB_ID=$(echo $RESPONSE | jq -r '.result.id')
# Wait for completion
while true; do
STATUS=$(curl -s https://api.radiance.cloud/airunner/status/$JOB_ID)
STATE=$(echo $STATUS | jq -r '.result.status')
if [ "$STATE" = "completed" ]; then
# Get generated text
curl -s https://api.radiance.cloud/airunner/result/json/$JOB_ID \\
| jq -r '.result.generated_text'
break
fi
sleep 2
done
Webhooks allow you to receive real-time notifications when your jobs complete or fail, instead of polling the status endpoint.
Include the webhook_url parameter when submitting a job:
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=image-classification" \\
-F "file=@image.jpg" \\
-F "webhook_url=https://myapp.com/webhook"
{
"event": "job.completed",
"job": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "completed",
"created_at": "2025-10-27T10:15:30.123Z",
"started_at": "2025-10-27T10:15:45.678Z",
"completed_at": "2025-10-27T10:16:12.345Z",
"timing": {
"queue_time_ms": 15555,
"running_time_ms": 26667,
"complete_time_ms": 42222,
"latency_ms": 0
},
"result_key": "results/550e8400.../result.json",
"result_file_key": "results/550e8400.../output.jpg",
"webhook_url": "https://myapp.com/webhook"
},
"timestamp": "2025-10-27T10:16:12.500Z"
}
{
"event": "job.failed",
"job": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"model": "image-classification",
"priority": 1,
"status": "failed",
"created_at": "2025-10-27T10:15:30.123Z",
"started_at": "2025-10-27T10:15:45.678Z",
"completed_at": "2025-10-27T10:16:12.345Z",
"failure_reason": "CUDA out of memory",
"webhook_url": "https://myapp.com/webhook"
},
"timestamp": "2025-10-27T10:16:12.500Z"
}
| Header | Value |
|---|---|
Content-Type |
application/json |
User-Agent |
AI-Runner-Webhook/1.0 |
const express = require('express');
const app = express();
app.use(express.json());
app.post('/webhook', async (req, res) => {
const { event, job, timestamp } = req.body;
console.log(\`Received webhook: \${event}\`);
console.log(\`Job ID: \${job.id}\`);
console.log(\`Status: \${job.status}\`);
if (event === 'job.completed') {
// Job completed successfully
console.log(\`Result key: \${job.result_key}\`);
// Fetch result
const response = await fetch(
\`https://api.radiance.cloud/airunner/result/json/\${job.id}\`
);
const result = await response.json();
console.log('Result:', result);
// Process result...
} else if (event === 'job.failed') {
// Job failed
console.error(\`Job failed: \${job.failure_reason}\`);
// Handle failure...
}
// Respond with 200 to acknowledge receipt
res.status(200).send('OK');
});
app.listen(3000, () => {
console.log('Webhook server listening on port 3000');
});
Jobs can be assigned different priority levels to control processing order. Higher priority jobs are claimed by agents before lower priority jobs.
| Priority | Value | Use Case |
|---|---|---|
urgent |
3 | Critical, time-sensitive tasks that need immediate processing |
high |
2 | Important tasks that should be processed soon |
normal |
1 (default) | Standard processing priority |
low |
0 | Background tasks, batch jobs, non-urgent processing |
# Submit urgent job (string format)
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=text-generation" \\
-F 'payload={"prompt": "Emergency alert text"}' \\
-F "priority=urgent"
# Submit low priority batch job (numeric format)
curl -X POST https://api.radiance.cloud/airunner/submit \\
-F "model=image-classification" \\
-F "file=@image.jpg" \\
-F "priority=0"
# Batch submission with mixed priorities
curl -X POST https://api.radiance.cloud/airunner/submit/batch \\
-H "Content-Type: application/json" \\
-d '{
"jobs": [
{
"model": "text-generation",
"payload": {"prompt": "Critical task"},
"priority": "urgent"
},
{
"model": "image-classification",
"file_base64": "data:image/jpeg;base64,...",
"priority": "low"
}
]
}'
The API provides detailed timing metrics for every job to help you understand performance and identify bottlenecks.
| Field | Type | Description |
|---|---|---|
created_at |
ISO timestamp | When the job was submitted |
started_at |
ISO timestamp or null | When an agent started processing (null if still queued) |
completed_at |
ISO timestamp or null | When the job finished (null if still in progress) |
queue_time_ms |
number | Time waiting in queue (ms) |
running_time_ms |
number | Time spent processing (ms) |
complete_time_ms |
number or null | Total time from submission to completion (ms) |
latency_ms |
number or null | System overhead time (ms) |
queue_time_ms = started_at - created_at
running_time_ms = completed_at - started_at
complete_time_ms = completed_at - created_at
latency_ms = complete_time_ms - (queue_time_ms + running_time_ms)
{
"id": "550e8400-e29b-41d4-a716-446655440000",
"status": "completed",
"created_at": "2025-10-27T10:15:30.000Z",
"started_at": "2025-10-27T10:15:45.000Z",
"completed_at": "2025-10-27T10:16:12.000Z",
"timing": {
"queue_time_ms": 15000, // Waited 15 seconds in queue
"running_time_ms": 27000, // Processed for 27 seconds
"complete_time_ms": 42000, // Total 42 seconds
"latency_ms": 0 // No system overhead
}
}